Sharp Local Well-posedness Results for the Nonlinear Wave Equation

نویسندگان

  • HART SMITH
  • DANIEL TATARU
چکیده

This article is concerned with local well-posedness of the Cauchy problem for second order quasilinear hyperbolic equations with rough initial data. The new results obtained here are sharp in low dimension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Cauchy Problem for a Nonlinearly Dispersive Wave Equation

We establish the local well-posedness for a new nonlinearly dispersive wave equation and we show that the equation has solutions that exist for indefinite times as well as solutions which blowup in finite time. Furthermore, we derive an explosion criterion for the equation and we give a sharp estimate from below for the existence time of solutions with smooth initial data.

متن کامل

ar X iv : 0 80 2 . 38 70 v 1 [ m at h . A P ] 2 6 Fe b 20 08 GRADIENT NLW ON CURVED BACKGROUND IN 4 + 1 DIMENSIONS

We obtain a sharp local well-posedness result for the Gradient Nonlinear Wave Equation on a nonsmooth curved background. In the process we introduce variable coefficient versions of Bourgain’s X spaces, and use a trilinear multiscale wave packet decomposition in order to prove a key trilinear estimate.

متن کامل

The wave equation on hyperbolic spaces

We study the dispersive properties of the wave equation associated with the shifted Laplace–Beltrami operator on real hyperbolic spaces and deduce new Strichartz estimates for a large family of admissible pairs. As an application, we obtain local well–posedness results for the nonlinear wave equation.

متن کامل

Sharp Well-posedness Results for the Generalized Benjamin-ono Equation with High Nonlinearity

We establish the local well-posedness of the generalized BenjaminOno equation ∂tu+H∂ xu±u ∂xu = 0 in Hs(R), s > 1/2−1/k for k ≥ 12 and without smallness assumption on the initial data. The condition s > 1/2−1/k is known to be sharp since the solution map u0 7→ u is not of class Ck+1 on Hs(R) for s < 1/2 − 1/k. On the other hand, in the particular case of the cubic Benjamin-Ono equation, we prov...

متن کامل

Multilinear Space-Time Estimates and Applications to Local Existence Theory for Nonlinear Wave Equations

We prove a quadrilinear integral estimate in space-time for solutions of the homogeneous wave equation on R. This estimate is a generalization of a previously known bilinear L estimate, and it arises naturally in the study of the local regularity properties of a hyperbolic model equation connected with wave maps from Minkowski space R into a sphere. The scale invariant data space for this equat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002